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Rhenium- and manganese-catalyzed reactions between b-keto
esters and acetylenes, followed by treatment with tetrabutyl-

ammonium fluoride, gave 2-pyranone derivatives regioselectively.

2-Pyranone derivatives are important because they serve as

structural units of natural products1 and building blocks of

organic molecules.2 There have been many reports on the

synthesis of 2-pyranones.3 To construct 2-pyranone frame-

works regioselectively, we have employed a new synthetic

route via C–C single bond cleavage (Fig. 1). The reaction

proceeds via the insertion of an acetylene into a carbon–

carbon single bond of a b-keto ester and intramolecular

cyclization with the elimination of an alcohol.

By the reaction of b-keto ester 1a with phenylacetylene (2a)

in the presence of a rhenium complex, [ReBr(CO)3(thf)]2, as

a catalyst, the insertion of the acetylene into a carbon–carbon

single bond of the b-keto ester proceeded, and d-keto esters

3a, 4a and 5a, which are olefinic isomers, were obtained in 10,

78, and 4% yields, respectively (eqn (1)).4–6 Interestingly,

2-pyranone 6awas formed in 8% yield as a side product (eqn (1)).

ð1Þ

The reaction forming 2-pyranone 6a consists of two main

parts: (a) the insertion of phenylacetylene (2a) into a

carbon–carbon single bond of b-keto ester 1a (carbon chain

extension reaction) and (b) the cyclization of the formed

d-keto esters 3a–5a to give 2-pyranone 6a. As a preliminary

investigation, we examined the first step (Table 1). The reac-

tion of a b-keto ester having a phenethyl group at the active

methylene moiety, 1b, with 2a in the presence of a rhenium

catalyst and molecular sieves (MS) 4A gave a mixture of

d-keto esters in 88% yield (3b : 4b : 5b = 14 : 84 : 2)

(Table 1, entry 1).7 A b-keto ester without any substituents

at the active methylene moiety, 1c, provided the corresponding

d-keto esters 3c–5c in moderate yields (Table 1, entry 2). By

using b-keto ester 1d, the yield of the d-keto esters decreased

(Table 1, entry 3). Arylacetylenes having an electron-donating

or -withdrawing groups at the para-position of the phenyl

group, 2b, 2c and 2d, gave d-keto esters 3–5 in good to

excellent yields (Table 1, entries 4–6). By using 1-bromo-4-

ethynylbenzene (2e), the corresponding d-keto esters 3h–5h

were obtained without losing the bromo group (Table 1, entry 7).

1-Cyclohexenylacetylene (2f) also afforded a mixture of d-keto
esters 3i–5i in excellent yield (Table 1, entry 8). Acetylenes

bearing a primary alkyl group, 2g and 2h, provided the

corresponding keto esters in moderate to good yields

(Table 1, entries 9 and 10).8 The reaction did not proceed with

internal acetylenes at 80 1C. However, when the reactions of

internal acetylenes were carried out at 135 1C, they proceeded

but did not stop at the formation of d-keto esters 3–5 (low

yields); 2-pyranone 6 was obtained as a major product, as

described in Table 2.

When b-keto ester 7 was exposed to the reaction conditions

shown in eqn (2), intramolecular insertion of the acetylene

moiety into a carbon–carbon bond proceeded, and cyclo-

hexene 8 and methylenecyclohexane 9 were obtained in 66 and

16% yields, respectively (eqn (2)).9–11 The yield and selectivity

Fig. 1 Retrosynthetic strategy for 2-pyranones.

Table 1 Reactions between b-keto esters 1 and acetylenes 2
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were increased by adding 2,6-diisopropylphenylisocyanide,12

and cyclohexene 8 was obtained in 84% yield.

ð2Þ

The proposed mechanism for the formation of d-keto esters is

as follows (Scheme 1): (1) the formation of a rhenacyclopentene

intermediate by the reaction of a rhenium catalyst, b-keto
ester and terminal acetylene.13 After the formation of the

intermediate, there are two possible pathways; the difference

is the timing of the reductive elimination. Path A: (2-a) ring

opening by a retro-aldol reaction, (3-a) reductive elimination

and (4) isomerization of the olefin moiety.14 Path B: (2-b)

reductive elimination, (3-b) ring opening by a retro-aldol

reaction and (4) isomerization of the olefin moiety.13,14

Next, we investigated the reaction conditions to improve the

yield of 2-pyranone 6a. In the case of using the rhenium

complex [ReBr(CO)3(thf)]2 as the catalyst, a high temperature

(180 1C) was found to be unavoidable (eqn (3), 2A).

ð3Þ

The temperature could be lowered substantially when tetra-

butylammonium fluoride (TBAF) was added to the reaction

mixture. For example, the treatment of b-keto ester 1a with 2a

in the presence of a catalytic amount of the rhenium complex

[ReBr(CO)3(thf)]2 and MS at 80 1C for 8 h, followed by the

addition of a catalytic amount of TBAF and stirring the mix-

ture at 25 1C for 8 h, gave 2-pyranone 6a in 95% yield (eqn (3),

2B; Table 2, entry 1).15–18 In this reaction, TBAF has an impor-

tant role in promoting the formation of 2-pyranone 6a at

25 1C.19 Arylacetylenes with electron-donating or -withdrawing

groups at the para-position, 2b and 2d, provided 2-pyranones 6b

and 6c in almost quantitative yields (Table 2, entries 2 and 3).

Enyne 2f produced the corresponding 2-pyranone 6d in 92%

yield (Table 2, entry 4). By using alkyl acetylene 2g, 2-pyranone

6e was formed in 83% yield (Table 2, entry 5). By the reaction

of 1b with 2a, 2-pyranone 6f was afforded in good yield

(Table 2, entry 6). Next, internal acetylenes were investigated

(Table 2, entries 7–10). The insertion of internal acetylenes into

a carbon–carbon bond of b-keto esters was found to occur, and

four substituted 2-pyranones were obtained in moderate to

quantitative yields. The reaction of 1a with diphenyl acetylene

(2i) at 150 1C for 24 h gave 2-pyranone 6g quantitatively

(Table 2, entry 7). b-Keto ester 1b also provided 2-pyranone

6h in 82% yield (Table 2, entry 8). 1-Phenyl-1-propyne (2j) and

6-dodecyne (2k) afforded 2-pyranones 6i + 6i0 and 6j in 94 and

79% yields, respectively (Table 2, entries 9 and 10). A b-keto
ester with no substituent at the active methylene position,

1c, also produced 2-pyranone 6k in excellent yield (Table 2,

entry 11).

Because transition metals of the first row are abundant and

cheap compared to those of the second and third rows of the

periodic table, it is important to be able to replace rhenium

(third row) catalysts with manganese (first row) catalysts. We

noticed that the manganese complex MnBr(CO)5 was also

effective for the transformation in some cases, and in contast

to the rhenium catalyst, the reaction did not stop at the

insertion of the acetylene, even at 80 1C, producing pyranone

6a in 82% yield (eqn (4)). The results with MnBr(CO)5 are also

shown in Table 2. In the case of aryl or conjugated acetylenes,

the corresponding 2-pyranones were obtained in moderate to

excellent yields (Table 2, entries 1–4 and 6); however, the yields

dropped substantially in the case of an alkyl acetylene

(Table 2, entry 5). Furthermore, in contrast to the rhenium

Table 2 Synthesis of 2-pyranones 6 from b-keto esters 1 and
acetylenes 2

Scheme 1 Proposed mechanism for the formation of d-keto esters.
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catalyst, internal acetylenes did not give 2-pyranones (Table 2,

entries 7–11).

ð4Þ

By the treatment of a b-keto ester with an acetylene moiety,

11, with the rhenium catalyst [ReBr(CO)3(thf)]2 and MS,

bicyclic 2-pyranone 12 was produced in 95% yield (eqn (5)).

ð5Þ

2-Pyranone 6 could be formed by the cyclization of d-keto
ester 3 via the elimination of ethanol (Scheme 2). Another

possible mechanism is an equilibrium between d-keto esters 3,

4 and 5, and intramolecular cyclization from 4.

In summary, we have succeeded in the rhenium-catalyzed

regioselective insertion of terminal and internal acetylenes into

a carbon–carbon single bond of b-keto esters. As a result,

d-keto esters were obtained. At higher temperatures, the d-keto
esters were cyclized to 2-pyranone derivatives via the elimina-

tion of ethanol. In addition, by using a manganese catalyst,

2-pyranone derivatives could be obtained under milder condi-

tions. In both the rhenium- and manganese-catalyzed transfor-

mations, the addition of a catalytic amount of TBAF was

effective at promoting the formation of a 2-pyranone frame-

work. We hope that these highly atom-economical trans-

formations will become a powerful tool in synthetic organic

chemistry.
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